Deconstructing nucleotide binding activity of the Mdm2 RING domain
نویسندگان
چکیده
Mdm2, a central negative regulator of the p53 tumor suppressor, possesses a Really Interesting New Gene (RING) domain within its C-terminus. In addition to E3 ubiquitin ligase activity, the Mdm2 RING preferentially binds adenine base nucleotides, and such binding leads to a conformational change in the Mdm2 C-terminus. Here, we present further biochemical analysis of the nucleotide-Mdm2 interaction. We have found that MdmX, an Mdm2 family member with high sequence homology, binds adenine nucleotides with similar affinity and specificity as Mdm2, suggesting that residues involved in nucleotide binding may be conserved between the two proteins and adenosine triphosphate (ATP) binding may have similar functional consequences for both Mdm family members. By generating and testing a series of proteins with deletions and substitution mutations within the Mdm2 RING, we mapped the specific adenine nucleotide binding region of Mdm2 to residues 429-484, encompassing the minimal RING domain. Using a series of ATP derivatives, we demonstrate that phosphate coordination by the Mdm2 P-loop contributes to, but is not primarily responsible for, ATP binding. Additionally, we have identified the 2' and 3' hydroxyls of the ribose and the C6 amino group of the adenine base moiety as being essential for binding.
منابع مشابه
Dual-site regulation of MDM2 E3-ubiquitin ligase activity.
The control of p53 ubiquitination by MDM2 provides a model system to define how an E3-ligase functions on a conformationally flexible substrate. The mechanism of MDM2-mediated ubiquitination of p53 has been analyzed by deconstructing, in vitro, the MDM2-dependent ubiquitination reaction. Surprisingly, ligands binding to the hydrophobic cleft of MDM2 do not inhibit its E3-ligase function. Howeve...
متن کاملRING domain-mediated interaction is a requirement for MDM2's E3 ligase activity.
The RING domain of MDM2 that is essential for its E3 ligase activity mediates binding to itself and its structural homologue MDMX. Whereas it has been reported that RING domain interactions are critical, it is not well understood how they affect the E3 ligase activity of MDM2. We report that the E3 ligase activity requires the RING domain-dependent complex formation. In vivo, MDM2 and MDMX hete...
متن کاملA function for the RING finger domain in the allosteric control of MDM2 conformation and activity.
The MDM2 oncoprotein plays multiple regulatory roles in the control of p53-dependent gene expression. A picture of MDM2 is emerging where structurally discrete but interdependent functional domains are linked through changes in conformation. The domain structure includes: (i) a hydrophobic pocket at the N terminus of MDM2 that is involved in both its transrepressor and E3-ubiqutin ligase functi...
متن کاملThe RING domain of Mdm2 can inhibit cell proliferation.
Mdm2 is a p53-inducible phosphoprotein that negatively regulates p53 by binding to it and promoting its ubiquitin-mediated degradation. Alternatively spliced variants of Mdm2 have been isolated from human and mouse tumors, but their roles in tumorigenesis, if any, remain elusive. We cloned six alternatively spliced variants of Mdm2 from E(mu)-Myc-induced mouse lymphomas, all of which lacked the...
متن کاملMdm2 RING Mutation Enhances p53 Transcriptional Activity and p53-p300 Interaction
The p53 transcription factor and tumor suppressor is regulated primarily by the E3 ubiquitin ligase Mdm2, which ubiquitinates p53 to target it for proteasomal degradation. Aside from its ubiquitin ligase function, Mdm2 has been believed to be capable of suppressing p53's transcriptional activity by binding with and masking the transactivation domain of p53. The ability of Mdm2 to restrain p53 a...
متن کامل